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Abstract

Parametric identification of nonlinear systems is done using a hybrid time/frequency-domain-based Fourier series

identification method. A multiharmonic force excitation is proposed to overcome identification problems encountered with

a single harmonic excitation for certain classes of nonlinear systems. A Duffing oscillator and a system with quadratic

damping are considered in detail for illustration of the proposed identification scheme using multiharmonic excitation. It is

demonstrated that for most situations a multiharmonic excitation leads to significantly better identification results than a

single harmonic excitation-based method.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

In many applications, the systems are nonlinear or the effect of nonlinearity cannot be ignored. In such
cases, nonlinear system identification has to be carried out. The presence of nonlinearities poses challenges.
There are wide varieties of methods available for nonlinear system identification. If the mathematical structure
of the governing equations of the system is assumed or known a priori, the problem of identification reduces to
the determination of unknown physical parameters of the system. This problem is termed as parametric
identification. If the structure of equations is also unknown, the problem is called non-parametric
identification. In the present work, the area of investigation is confined to the parametric identification of
systems subjected to periodic excitation and having a periodic response.

Worden and Tomlinson [1] gave an overview of the broad category of methods in modal analysis applied to
nonlinear systems. In one of the early classical papers on nonlinear system identification, Masri and Caughey
[2] used the state variables of nonlinear systems to express the system characteristics in terms of orthogonal
functions. Crawley and Aubert [3] used the technique of force–state mapping to obtain the nonlinearities in the
joints of space structure. Mohammad et al. [4] suggested a method for directly estimating the physical
parameter matrices of the linear and nonlinear structures. The work takes into account a variety of
nonlinearities of arbitrary order. Perona et al. [5] used a trajectory method for reconstruction of ordinary
differential equations from a given time-series trajectory. Some form of the method of least squares is used in
these papers where the system excitation and response need not be periodic.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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There are identification techniques based on the periodicity of the excitation and response. Yasuda et al. [6]
applied the harmonic balance method (HBM) for identification of nonlinear multidegree-of-freedom (mdof)
systems. They approximated the nonlinearity in the system using polynomials and the response of the system
was represented by a truncated Fourier series. Yuan and Feeny [7] used the technique of combining the
periodic orbit extraction and harmonic balance scheme for the parametric identification of chaotic systems.
Thothadri et al. [8] used the principle of HBM to identify mdof systems. They used a methodology called
harmonic balance nonlinearity identification, which helps to identify parameters in self-excited motions of a
fluid structure system. The method uses higher order harmonics contained in the data to recover the
nonlinearities required to model the dynamics. Doughty et al. [9] have presented a comparative study of the
parameter estimation of a cantilever beam, subjected to a base excitation, and assumed to be transversely
vibrating in a single mode. Three techniques have been compared, with the first method based on continuous
time differential equation, the second on HBM and the third on method of multiple scales.

In using HBM for system identification, numerical difficulties arise, which has not been highlighted by the
above-mentioned investigations. This is related to the pseudo-inversion of the ill-conditioned matrix
corresponding to the set of linear equations obtained by the process of approximating the solution by a
Fourier series. Another problem is that even if the inversion of the matrix is proper, the identified values may
not be correct. This is because even though the forward problem may yield unique solutions, the
corresponding algebraic inverse form is unique only in the least squares sense. Thus, it is seen that the accuracy
of identification depends on the structure of the generated data set, which in turn depends on the excitation.
Thus, the successful identification depends on the choice of a suitable excitation signal.

Most of the investigations, using HBM, have been confined to a sinusoidal excitation and guidelines on the
choice of excitation amplitude and frequency have not been adequately discussed. The main objective of this
paper is to develop a robust identification procedure using a hybrid frequency/time-domain version of HBM.
While a number of different parametric identification methods are available, the harmonic/periodic excitation-
based identification method has been chosen, since this is the form of excitation that exists in a number of
practical mechanical systems. In this work, an inverse form of the Fourier series method, denoted as Fourier
series identification method (FSIM), is used for system identification. This method is quite similar to the
conventional HBM; the difference between HBM and FSIM is summarized in Fig. 1. There are two stages in
the identification denoted by two blocks 1 and 2 for HBM, 1 and 3 for FSIM. In HBM, both the stages are
(a)

(b)
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Fig. 1. (a). The identification problem and (b). The identification scheme and terminology. Items 1 and 2 together is termed as

identification by HBM. Items 1 and 3 together are termed as FSIM.
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done in the frequency domain whereas in FSIM the first stage is in the frequency domain and the second stage
is the time domain. The condition under which these two schemes yield the same results is established in
Appendix A. In this process, a correction is suggested in the original formulation of HBM as used by other
investigators.

In the present work, the excitation is assumed to be harmonic/periodic and the response of the system is
assumed to be periodic. Though the scheme of FSIM is easy in implementation, there may be considerable
error in the parameter estimates if a single harmonic excitation is used as shown later in the paper. In order to
improve the success in the identification a multiharmonic excitation is proposed.

The following natural questions arise on the choice of the excitation signal for system identification:
(i) What combination of amplitude and frequency of the harmonic excitation will yield good identification
results? (ii) A broader question is, are there better candidates for the input signal? A multiharmonic force
excitation with suitably chosen amplitudes and frequencies is proposed as a solution to the second question.
However, the choice of the excitation parameters in these cases is a difficult problem as there are numerous
combinations of them. In this paper, an attempt is made to answer the above questions through
computational experiments. A preliminary work of the present kind was carried out by authors [10]. A method
of improving the identification based on a multiharmonic excitation is suggested. It is shown that for a Duffing
oscillator and a system with quadratic damping, multiharmonic excitation improves the identification results
significantly for a broad range of excitation frequencies and amplitudes. A mdof system is also considered to
establish the improvement with multiharmonic excitation.

2. Fourier series identification method

A review of the parametric identification using FSIM is given in this section. Vibratory systems governed by
nonlinear ordinary differential equations and subjected to harmonic/periodic force excitations are considered.
Further, it is assumed that the response of the system is periodic. It is assumed that the simulation/
experimental data of the excitation force f(t) and the displacement response x(t) over a steady-state period is
available for analysis. The advantage of FSIM or HBM compared with techniques having non-periodic
response is that, since the response is periodic, given x(t), the velocity v(t) and acceleration a(t) are obtainable
by direct differentiation rather than numerical differentiation. Instead of x(t), if a(t) is available, v(t) and x(t)
can be obtained by direct integration. In this work, x(t) is chosen as it can then include the ‘mean response’. If
a(t) is chosen instead one has difficulty in determining the mean response while integrating. In the FSIM, the
periodic response of the system is expressed in terms of a truncated Fourier series with terms having
frequencies, which are integer multiples/sub-multiples of the excitation frequency. The coefficients of the
harmonic terms are obtained such that the resulting time series matches with the original one to the required
degree of accuracy. The original response of the system in general cannot be represented in an analytical form,
as the system is nonlinear. The Fourier series solution thus obtained can be used for system analysis as well as
system identification.

In the identification scheme, the Fourier solution is substituted into the governing equation of motion,
which gives an algebraic equation in terms of system parameters. Imposing the condition that this equation
should be satisfied at all sample points in the time domain, yields a system of linear algebraic equations. This is
solved using a pseudo-inversion technique to obtain the unknown system parameters.

2.1. Identification using FSIM

To illustrate the procedure, the harmonically forced Duffing oscillator is considered:

m €xþ c _xþ kxþ ax3 ¼ f ðtÞ ¼ F cos Ot, (1)

where m, c, k and a are the mass, damping coefficient, linear stiffness and coefficient of the nonlinear term,
respectively. They are the parameters of the system to be determined from the known input-response data. For
the purpose of parametric identification, the oscillator is assumed to be excited with known harmonic
excitation parameters, F and O. Assume that the response x(t) of the vibrating system is known and is periodic
with a fundamental period T ¼ 2p/O. Expressing the response in a truncated M term harmonic Fourier series
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one has

xðtÞ ¼ a0 þ
XM
j¼1

ðaj cos jOtþ bj sin jOtÞ. (2)

Substituting this periodic solution in Eq. (1), one obtains

�m
XM
j¼1

ðajj
2O2 cos jOtþ bjj

2O2 sin jOtÞ þ c
XM
j¼1

ð�ajjO sin jOtþ bjjO cos jOtÞ

þ kða0 þ
XM
j¼1

ðaj cos jOtþ bj sin jOtÞÞ þ aða0 þ
XM
j¼1

ðaj cos jOtþ bj sin jOtÞÞ3 ¼ F cos Ot. ð3Þ

Eq. (3) can be written compactly as

mp1ðtÞ þ cp2ðtÞ þ kp3ðtÞ þ ap4ðtÞ ¼ p5ðtÞ, (4)

where

p1ðtÞ ¼ � O2
XM
j¼1

j2ðaj cos jOtþ bj sin jOtÞ; p2ðtÞ ¼ O
XM
j¼1

jð�aj sin jOtþ bj cos jOtÞ,

p3ðtÞ ¼ a0 þ
XM
j¼1

ðaj cos jOtþ bj sin jOtÞ; p4ðtÞ ¼ ða0 þ
XM
j¼1

ðaj cos jOtþ bj sin jOtÞÞ3,

p5ðtÞ ¼ F cos Ot. ð5Þ

For a set of N discrete, equally spaced time samples in one excitation time period T the matrix form of the
above equation becomes

p1ð0Þ p2ð0Þ p3ð0Þ p4ð0Þ

p1ðDtÞ p2ðDTÞ p3ðDTÞ p4ðDTÞ

..

. ..
. ..

. ..
.

p1ððN � 1ÞDtÞ p2ððN � 1ÞDtÞ p3ððN � 1ÞDtÞ p4ððN � 1ÞDtÞ

2
666664

3
777775

m

c

k

a

8>>><
>>>:

9>>>=
>>>;
¼

p5ð0Þ

p5ðDtÞ

..

.

p5ððN � 1ÞDtÞ

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
. (6)

Eq. (6) can be written compactly as

½G�frg ¼ ff g, (7)

where {r} ¼ [m c k a]T is the parameter set, where superscript T indicates transpose. The identified parameter
set {r}i is obtained as

frgi ¼ ½G�
þff g ¼ ½D��1½G�Tff g, (8)

where [G]+ is the pseudo-inverse of [G] and

½D� ¼ ½G�T½G� ¼

p1ð0Þ � � � p1ððN � 1ÞDtÞ

p2ð0Þ � � � p2ððN � 1ÞDtÞ

p3ð0Þ � � � p3ððN � 1ÞDtÞ

p4ð0Þ � � � p4ððN � 1ÞDtÞ

2
666664

3
777775
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p1ð0Þ p2ð0Þ p3ð0Þ p4ð0Þ

..

. ..
. ..

. ..
.

p1ððN � 1ÞDtÞ p2ððN � 1ÞDtÞ p3ððN � 1ÞDtÞ p4ððN � 1ÞDtÞ

2
6664

3
7775

¼

PN�1
i¼0

ðp1ðiDtÞÞ2
P

p1ðiDtÞp2ðiDtÞ
P

p1ðiDtÞp3ðiDtÞ
P

p1ðiDtÞp4ðiDtÞ

:
P
ðp2ðiDtÞÞ2

P
p2ðiDtÞp3ðiDtÞ

P
p2ðiDtÞp4ðiDtÞ

: :
P
ðp3ðiDtÞÞ2

P
p3ðiDtÞp4ðiDtÞ

: : :
P
ðp4ðiDtÞÞ2

2
666666664

3
777777775
. ð9Þ

The pseudo-inverse is equivalent to the least squares minimization of jj½G�frg � ff gjj2. The above
formulation can be applied to other types of systems having smooth nonlinearities. Invertibility of the [D]
matrix plays a crucial role in successful identification. While it is clear that the excitation parameters will
influence the relative values of the elements of the [D] matrix, the appropriate choice of these parameters a
priori is difficult.

As seen from Appendix A, one could use either the hybrid frequency/time-domain-based method described
above or a frequency-domain method; these are equivalent. The time-domain method is advantageous since
the nonlinearities are easier to calculate in the time domain. The issue of how many terms to be retained in
the HBM for convergence does not arise in the FSIM case and hence for the rest of the paper this technique
is used.

2.2. Direct determination of error in parameters

If the identification is carried out using the simulated data as mentioned earlier, the parameters of the
original and the identified system are available for error estimation. Error measures based on difference in
parameter values for a Duffing oscillator can be defined as

me ¼ ðm�miÞ=m; ce ¼ ðc� ciÞ=c; ke ¼ ðk � kiÞ=k; ae ¼ ða� aiÞ=a, (10)

where subscript i represents the identified parameters and me, ce, ke and ae are the normalized errors in the
identification of mass, damping, linear stiffness and nonlinear stiffness, respectively. The total parameter error
Ep is computed as

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

e þ c2e þ k2
e þ a2eÞ=np

q
, (11)

where np is the number of parameters, equal to four in this case. One of the most commonly used error norm in
identification is root mean square (rms) error in the response defined as

Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

t¼0

½xiðtÞ � xðtÞ�2 dt;

s
(12)

where xi(t) is the response based on the identified parameters. This error will not enable us to judge the
robustness of the algorithm. First, the pseudo-inverse used in the identification will lead to a least square error
minimization of the algebraic sum of the forces in the governing equation. Based on the studies done (see
Appendix A for details) it is clear that Er is not well correlated with Ep in many situations. i.e. a minimum of
Er does not necessarily imply a minimum of Ep and vice versa. In an experimental scenario, only a measurable
norm like Er is available for checking the correctness of the result. However, in the development of this
algorithm, Ep as defined in this paper can be estimated since the study is done with known input, output, as
well as system parameters. This can be used to check the quality of the identification algorithm itself. There is
another reason for using the parametric norm, since there are investigations with single and multiharmonic
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excitations and it will not make sense to compare Er in these two cases, as the response trajectories are
different for both cases.

2.3. Implementation

If the periodic response of a system is given, an approximate solution for the system can be accomplished by
performing a discrete Fourier transform (DFT) on the response data. The data points are usually equally
spaced in time. In practice, a fast Fourier transform (FFT) is used. The FFT coefficients, which are complex,
may be converted into equivalent real-valued Fourier series coefficients. Following this, the system
identification by pseudo-inverse as mentioned above can be done.

Parametric identification of the Duffing oscillator illustrated in the previous section is carried out using the
FSIM. To generate data for the study, the periodic response of a known system to a harmonic excitation is
obtained by numerical integration in MATLAB. The above data is transformed to the frequency domain, to
obtain the Fourier series solution to the problem. Using the above input–output data again, the FSIM is made
use of to identify the parameters of the system. The number of sampling points N considered in this case is 128.
N is chosen to ensure that the frequency range of interest is covered. The equally spaced sampling time interval
is Dt ¼ T/N where T is the steady-state period of response. Relatively insignificant Fourier coefficient terms
are not included in the analysis. This is done by specifying a tolerance for the rms for the terms truncated in
the Fourier series. The following tolerance criterion is used for the truncation of the Fourier series coefficients,
with atrunc

rms representing the rms value of the truncated terms, arms representing the total rms value of the
response signal and � the specified tolerance:

atrunc
rms =armso�. (13)

In this study, the tolerance � is chosen as 10�6. This tolerance is used to filter out higher order harmonic
terms if any, which are extremely small in values. The identification result is not affected by this truncation,
but the number of terms in the series is reduced considerably, thereby saving computational effort involving
terms with nearly zero values. The result obtained for a case with single harmonic excitation is shown in
Table 1 and Fig. 2. The original time series of response and the response generated from the identified
parameters are plotted together.

3. Identification: single harmonic vs. multiharmonic excitation

In this section, a single, two and three harmonic inputs, denoted as 1-H, 2-H and 3-H, respectively, are
considered for the identification. A comparative study between these excitations on the success of
identification is carried out. The excitation mean load is taken as zero. Consider a Duffing oscillator
subjected to the excitation

m €xþ c _xþ kxþ ax3 ¼
XL

j¼1

FLj cosðjOtþ fjÞ, (14)

where L ¼ 1, 2 or 3. The higher frequencies are integer multiple of the fundamental frequency O. The phase
angles {fj} are taken as 0, {0, p} and {0, 2p/3, 4p/3} for L ¼ 1, 2 and 3, respectively. In order to compare the
performance of three cases, the rms values of the excitations in Eq. (14) are adjusted to be equal by the
Table 1

Nonlinear system identification using FSIM

Excitation: F cos(Ot); excitation parameters: F ¼ 3, frequency ratio Z ¼ O/on ¼ 0.4

on ¼ undamped natural frequency of the corresponding linear system

Actual system parameters: (r)T ¼ [m,c,k,a] ¼ [1.0,0.02,1,0.2]

Corresponding identified parameters: frgTi ¼ ½mi ; ci ; ki; ai� ¼ [1.0002,0.0198,0.9996,0.2001]

Er ¼ 6.4719� 10�7, Ep ¼ 0.0061
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Table 2

Forced excitation parameters: FLj is as given by Eq. (15)

1-H input F cos(Ot)

2-H input F21 cos(Ot)+F22 cos(2Ot+p)
3-H input F31 cos(Ot)+F32 cos(2Ot+2p/3)+ F33cos(3Ot+4p/3)
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following rule where the amplitude of excitation for 1-H excitation F11, is denoted as F. Define

FLj ¼ lLF=j; j ¼ 1; 2; . . . ;L, (15)

where L is the number of excitation harmonics, FLj is the amplitude of the jth harmonic term and lL is a
coefficient determined using equal rms criterion, F2 ¼ SL

j¼1ðFLjÞ
2. Thus, for L ¼ 2, lL ¼

ffiffiffiffiffiffiffiffi
4=5

p
and for L ¼ 3,

lL ¼ 6=7. Table 2 gives the amplitudes and phases for L ¼ 1, 2 and 3. The higher frequencies in the excitation
were chosen to be integer multiples of the lowest frequency. This helps to simplify the response spectrum
which in this case, generally consists of terms having frequencies which are integer multiples of the lowest
frequency of excitation. Subharmonic response can also be dealt with this procedure; however, that is not
considered here. If the multiple harmonics in the excitation are not chosen as above, combination tones of all
orders can occur in the response and specialized multitone HB algorithms [11,12], will be required to obtain a
representation of the steady-state response. The corresponding choice of the sampling rate is not trivial and it
will amount to creating unnecessary complications in the identification procedure.

Since the work involves a comparative study there are a wide variety of choices available such as (i) number
of harmonics in the excitation, (ii) the relative values of the amplitudes and phases of the harmonic terms in
the excitation and (iii) the range of the excitation parameters. Thus, there are an unlimited number of choices
for the type of multiharmonic excitation and certain criteria for the choice have to be fixed. The choice
possible include, uniform amplitude, decreasing amplitude with different rate of decrease like exponentially
decreasing, linearly decreasing, etc. and even increasing or mixed type (non-monotonic) amplitudes. In all
these cases, the equality of total rms can be made to satisfy. The choice in the paper was made keeping in mind
the applicability of the excitation signal. This has to be generated from a real system, which is physically
sustainable. Decreasing amplitude for higher frequencies was chosen with these notions. Otherwise, the choice
is arbitrary.

The parameters used in the simulation are given in Table 3. Three identification tests are conducted and the
results are shown in the same table. The force amplitudes and phases are chosen as given in Table 2. The result
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Table 3

Comparison of 1-H, 2-H and 3-H excitation for one set of data

F ¼ 0.1, Z ¼ 0.3; {r}T ¼ [1 0.02 1 0.2]; mean square value of excitation ¼ 0.005; e ¼ 10�6

Excitation harmonics Excitation force amplitude/s Identified parameters Ep lc

M c K a

1 0.1 0.7717 0.0199 0.9780 0.3613 0.4193 18.8324

2 [0.0894 0.0447] 0.9996 0.0200 1.0003 0.1762 0.0595 9.4201

3 [0.0853 0.0426 0.0284] 1.0010 0.0200 1.0040 0.1208 0.1980 7.8571

Table 4

Comparison of 1-H, 2-H and 3-H excitations over a range of excitation

Actual parameter set, {r}T ¼ [1,0.02,1,0.2]

Force range for F, Fmin ¼ 0.1, Fmax ¼ 2; frequency ratio range for Z, Zmin ¼ 0.1, Zmax ¼ 0.5

Number of trials, n ¼ 100 (10� 10)

NS: number of cases with Epp5% % Success ¼ (NS/n )� 100

% Success Average of lc

1-H input 71.56 9.4153

2-H input 94.67 4.9838

3-H input 89.33 5.1071
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shows that two harmonic excitations give a much better result compared with one harmonic excitation. To
examine the possible reason for improvement, consider the [D] matrix in Eq. (9). The condition number of this
matrix is evaluated for the three cases. The condition number is the ratio of the largest eigenvalue to the
smallest eigenvalue of a matrix and it indicates the quality of inversion of the matrix. The logarithm of the
condition number of the [D] matrix is denoted as lc and is given in the table. The result shows that there is a
drastic drop in the condition number from 1-H to 2-H excitation. However, though there is reduction in lc
from 2-H to 3-H, the corresponding Ep is higher for 3-H. Most of the results in this paper is found to be
qualitatively similar to the above result.

3.1. Comparison studies over the excitation parameter (F�Z) space

A computational test to illustrate the improvement of results for 2-H and 3-H inputs over a 1-H input is
given here. For comparison of these three excitations, the amplitudes and phases of excitations are chosen as
given in Table 2. Identification tests were conducted for a set of parameters and a comparison for the success
was made between 1-H, 2-H and 3-H excitations. Note that success is defined as those parameter sets for
which Epp0.05. The steady-state responses, which are not period-one (P-1), are excluded from the analysis;
P-1 response has a fundamental period equal to the period of excitation. Table 4 and Fig. 3 show the
comparisons for tests conducted over a range of excitation parameters. There is a significant improvement in
the success of identification while employing a two-harmonic excitation in place of a single harmonic
excitation. The performance of the three harmonic excitation lies in between the other two. One of the reasons
for the reduction in success may be due to the excitation of the super-harmonic resonance when the third
harmonic is used, as the nonlinearity is of the cubic type. The excitation frequencies are set below the resonant
region. This was based on a preliminary study that yielded relatively poor results for the excitation near
resonance. The reason for the poor results in the resonant region is that more of linear dependency is created
in the data set between the displacement and the acceleration terms and hence in the corresponding columns of
the [G] matrix.
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4. Identification results using multiharmonic force excitation for different parameter sets

The identification tests are now carried out for a range of system parameter values. The results for a sdof
Duffing oscillator and a system with quadratic damping are given. The system and the excitation parameter
values are given in Table 5.

4.1. Duffing oscillator

Fig. 4 shows the comparison plots for three cases for a range of the parameter a. The two harmonic input
case shows improvement in the identification results over the other two. Fig. 5 gives average value of lc for
three cases. There is a large drop in lc from 1-H to 2-H/3-H. It may be concluded that changing from 1-H to
multiharmonic excitation statistically gives better success and there is a corresponding lowering of condition
number. When a is large the single harmonic case is reasonably good as the cubic term starts to dominate the
response. Similar studies are conducted by varying the damping and the linear stiffness and the results are
shown in Figs. 6 and 7. The linear stiffness causes poorer identification results as the nonlinear contribution to
the response reduces.

The results similar to that given in Figs. 3 and 4 can be produced by a random generation procedure, which
is given in Section 5. This helps to present and interpret results in an alternate way.

4.2. System with quadratic damping nonlinearity

Consider the equation with a quadratic damping nonlinearity given by

m €xþ cj _xj _xþ kx ¼ f ðtÞ. (16)

The parameters to be identified are m, c and k. The identification scheme and the parametric error used are
similar to that described in Section 2. Figs. 8–10 show the results. In these cases, the 2-H and 3-H inputs give
nearly same results, which are much better than 1-H excitation.
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Fig. 4. Duffing oscillator: percentage success (for Epp0.05) variation with nonlinear parameter a. Twenty-five equally spaced points over

F�Z grid, specified in Table 6, is used at each value of a to obtain this comparison.
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Fig. 5. Duffing oscillator, effect of nonlinear stiffness a on condition number.

Table 5

Multi-harmonic excitation: parameter setting for simulation

1. Duffing oscillator

(i) Parameter varied: nonlinear parameter a from 0.1 to 1. Mass, m ¼ 1, damping, c ¼ 0.02, linear stiffness, k ¼ 1. excitation parameter

(EP) range: force range, Fmin ¼ 0.1, Fmax ¼ 2; frequency ratio range, Zmin ¼ 0.1, Zmax ¼ 0.5

(ii) Parameter varied: c, cmin ¼ 0.01, cmax ¼ 0.05; m ¼ 1; k ¼ 1, a ¼ 0.2 EP range: Fmin ¼ 0.1, Fmax ¼ 2.1; Zmin ¼ 0.1, Zmax ¼ 0.5

(iii) Parameter varied: k, kmin ¼ 0.1; kmax ¼ 2; m ¼ 1; c ¼ 0.02; a ¼ 0.2; EP range: Fmin ¼ 0.5; Fmax ¼ 2.1; Zmin ¼ 0.1, Zmax ¼ 0.4

2. Quadratic damping nonlinearity

(i) Parameter varied—damping c, cmin ¼ 0.01, cmax ¼ 0.05, Mass m ¼ 1; linear stiffness k ¼ 0.1; EP range: Fmin ¼ 0.01, Fmax ¼ 0.1;

Zmin ¼ 0.1, Zmax ¼ 1

(ii) Parameter varied—k, kmin ¼ 0.1, kmax ¼ 2; m ¼ 1; c ¼ 0.02; EP range: Fmin ¼ 0.5, Fmax ¼ 2; Zmin ¼ 0.1, Zmax ¼ 1

M.D. Narayanan et al. / Journal of Sound and Vibration 311 (2008) 707–728716
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Fig. 6. Duffing oscillator: percentage success variation with damping c.
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Fig. 7. Duffing oscillator: percentage success variation with linear stiffness k.
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4.3. Linear system

The present method is applied to a linear system. For a parameter set as given in Table 6, the comparison is
done over the range of excitations as given. The summary of the results shows that 1-H is a failure. For 1-H
excitation, the first and third columns of [G] matrix are linearly dependent and hence inversion will
not be proper. Viewing this in HBM form, there is only one harmonic to compare whereas the number of
parameters are three. Thus, the algebraic set of harmonic balance equations is under-determined. The 2-H
excitation effectively gives three independent equations as the second harmonic part of the excitation is having
a phase shift. This demonstrates that two harmonic inputs are quite necessary for using this identification
scheme.
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Fig. 9. Quadratic damping, effect of k on condition number.
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Fig. 10. Quadratic damping: percentage success variation with damping c.
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Table 6

Linear system identification

m ¼ 1, c ¼ 0.03, k ¼ 1

F: 0.1–2; Z ¼ 0.1–0.5, number of trials n ¼ 100 (10� 10)

1-H 2-H 3-H

% Success, Epo0.05 10 100 100

Average of lc 23.5119 5.4286 4.510
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4.4. Multidegree of freedom (mdof) system

A three dof system shown in Fig. 11 is identified using 1-H, 2-H and 3-H excitations. The basic formulation

as given in Section 2 is extended to this case. Referring to the figure, ½k1� ¼ k11 k12 . . . k1s1

h i
; ½k2� ¼

k21 k22 . . . k2s2

h i
and ½k3� ¼ k31 k32 . . . k3s3

h i
are the coefficients of the polynomial type stiffness,

and s1, s2 and s3 are the respective number of polynomial terms in the nonlinear stiffness.
The damping is considered as either viscous or quadratic type. For instance, the equations of motion for the

case where c3 is quadratic damping are

m1 €x1 þ
Xs1

i¼1

k1ix
i
1 þ c1 _x1 �

Xs2

i¼1

k2iðx2 � x1Þ
i
� c2ð _x2 � _x1Þ ¼ 0,

m2 €x2 þ
Xs2

i¼1

k2iðx2 � x1Þ
i
þ c2ð _x2 � _x1Þ �

Xs3

i¼1

k3iðx3 � x2Þ
i
� c3ð _x3 � _x2Þjð _x3 � _x2Þj ¼ 0,

m3 €x3 þ
Xs3

i¼1

k3iðx3 � x2Þ
i
þ c3ð _x3 � _x2Þjð _x3 � _x2Þj ¼ f 3ðtÞ, ð17a2cÞ

where f 3ðtÞ is the external excitation acting on mass 3. The system of equations is numerically solved. The
steady-state response, which is periodic, is taken for analysis. The FFT of the time series x1, x2 and x3 is
carried out. Let O be the fundamental frequency of the total six-dimensional orbit. The three-dimensional
equivalent of Eq. (7) for Eqs. (17) will take the following form, where the algebraic details are omitted:

½G�11 ½G�12 ½0�

½0� ½G�22 ½G�23

½0� ½0� ½G�33

2
64

3
75
frg1

frg2

frg3

8><
>:

9>=
>; ¼

f0g

f0g

ff 3g

8><
>:

9>=
>;. (18)

The external force on mass m3 is ff 3g ¼ f 3ð1Þ � � � f 3ðNÞ
h iT

. The three sets of parameters are

frg1 ¼ m1 c1 k11 . . . k1s1

h iT
; frg2 ¼ m2 c2 k21 � � � k2s2

h iT
,

frg3 ¼ m3 c3 k31 . . . k3s3

h iT
. ð19Þ

The parameters are identified in the following sequence as

½G�33frg3 ¼ ff 3g ) frg3 ¼ ½G�
þ
33ff 3g,

½G�22frg2 þ ½G�23frg3 ¼ f0g ) frg2 ¼ �½G�
þ
22½G�23frg3,

½G�11frg1 þ ½G�12frg2 ¼ f0g ) frg1 ¼ �½G�
þ
11½G�12frg2. ð20a2cÞ

4.4.1. Numerical example

Consider a system with the parameters as given in Table 7(a). The excitation is given on the third mass. The
excitation parameter range is Fmin ¼ 500, Fmax ¼ 1500, Zmin ¼ 0.2, Zmax ¼ 0.8 where Z1 ¼ O/on1, on1 is the
first undamped natural frequency of the system. The undamped natural frequencies of the system are 26.2,



ARTICLE IN PRESS

Table 7a

mdof system parameters

Mass, kg Stiffness, N/m � 104 Damping, N s/m � 103

m1 ¼ 1 k1 ¼ 1 (linear) c1 ¼ 0.04 (quadratic)

m2 ¼ 2 [k2] ¼ [0.5 0.1] (Duffing) c2 ¼ 0.03 (viscous)

m3 ¼ 2.5 k3 ¼ 2 (linear) c3 ¼ 0.02 (quadratic)

f3(t)
m1 m2 m3

[k1] [k3]

c1
c2 c3

x1(t) x2(t) x3(t)
[k2]

Fig. 11. A schematic of the mdof system considered for identification.
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blank spaces correspond to either Ep40.05 or the response being non-P1 type.
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118.1 and 144.4 rad/s. Thus the excitation is below the first natural frequency. The criterion of the rms equality
used in this case is the same as given in Section 3. The result of the 100 trials using a uniform grid in the above
range of force and frequency is given in Fig. 12 and Table 7(b). The condition numbers associated with the
matrices ½G�T11½G�11; ½G�

T
22½G�22 and ½G�T33½G�33 are denoted by lc1, lc2 and lc3, respectively. In this case, 2-H and

3-H excitations give a large improvement in results over 1-H. A reason for the improvement can again be
attributed to the drop in the condition number, especially in lc3.

5. Comparison studies by random generation of excitation parameter set

There is another way to obtain and present the comparative results for the various cases explained before,
by using a random generation of the excitation parameters. This method is illustrated here for the Duffing
oscillator (Sections 3–4) for single and multiharmonic force excitation. The excitation parameters are
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Table 7b

mdof system identification results

n ¼ 10� 10 ¼ 100 1-H 2-H 3-H

% Success, Epo0.05 6 68 81

Average of lc1 14.5914 12.7808 13.2848

Average of lc2 20.1275 18.7803 19.0273

Average of lc3 20.1639 16.7550 17.1822
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Fig. 13. Identification trials by random selection of excitation parameters. Symbols: J—failure, D—first success, &—second success. At

the end of second success, the total count is made. In this case, it is 4.
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Fig. 14. Trial set as in Fig. 13 is repeated 50 times for single and multiexcitations.

M.D. Narayanan et al. / Journal of Sound and Vibration 311 (2008) 707–728 721
generated randomly having a uniform probability distribution within a selected range of F�Z. Identification is
carried out for a number of trials until two results are successful (Epo5%) and nearly match. The minimum
number of trials required for two successful tests is taken as an indicator of the effectiveness of the method.
The system and excitation parameters are the same as given in Table 6 with a ¼ 0.2. The process is illustrated
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in Figs. 13–14. In experimental situations, these are the kind of trials that need to be done for getting proper
results. Now this experiment is repeated several times to get an average number of trials required for getting
the minimum of two successes. Continuing with the earlier task of improving the excitation with
multiharmonic excitation, one gets the results as shown in Fig. 14 for one, two and three harmonic
excitations, with forces as given in Table 2. The average value of the minimum number of trials for two
successes for the above 50 iterations are av1 ¼ 2.54, av2 ¼ 2.08 and av3 ¼ 2.24 for 1-H, 2-H and 3-H
excitations, respectively. The information content of this figure is similar to that of Fig. 3. It is clear that the
two-harmonic excitation is most effective in this case.

Further, it is possible to get a comparison among the three excitations while any one of the system
parameters is varied. Fig. 15 shows such a comparison plot. At each of the 10 values of a, 50 iterations are
done as in Fig. 14 to obtain this plot. This result is nearly matching with the results of Fig. 4. This suggests to
the experimenter that the choice of multiharmonic signals is better than a single harmonic. Again, this figure
may be compared with Fig. 4, as parameters used are the same.

6. Discussion and conclusions

Single harmonic excitation is found to have deficiency when used as an excitation signal for para-
metric system identification. To overcome this deficiency, a multiharmonic excitation is proposed.
A simulation study is carried out using a hybrid frequency/time-domain method, FSIM, to investi-
gate the success of the identification for single vs. multiharmonic excitation cases. Excitations 2-H/3-H
of the form suggested is found to give improvement in the identification results considerably. The lc
associated with the multiharmonic excitation has been considerably reduced compared with the lc
of a numerically ill-posed problem with 1-H excitation. Further, a comparative study of FSIM and
HBM is done and the condition for the equivalence of results in the time domain and frequency domain is
established.

More studies are necessary to discern result patterns for other nonlinear systems. The choice of the
excitation parameters may be done specific to each particular class of systems such as Duffing oscillator. This
will involve the study of the individual nonlinear dynamics of systems that influence the numerical estimates of
the parameters. Thus, the present scheme can be tailor made for any system. The usefulness of this study is not
in the particular results it has generated but from the fact that it highlights the need for carrying out such an
investigation for proposing guidelines for the selection of an appropriate periodic test signal for successful
experimental system identification.
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Appendix A. Identification: a comparison between time-domain and frequency-domain methods

In the original proposition of identification using HBM by Yasuda et al. [6], a frequency-domain method is
used whereas FSIM uses a Fourier series solution to calculate a time series, which is followed by a
minimization. This needs a clarification and the details are given here.

For the parametric identification, in Section 2, the form [G]{r} ¼ {f} was used. This equation is in the time
domain. The columns of [G] constitute the time series of €xðtÞ; _xðtÞ;xðtÞ, etc. for one a time period of the
fundamental excitation frequency and {f}is the time series of excitation. All these quantities are assumed to be
periodic with the same fundamental period. Let the actual system response be denoted byx0ðtÞ. A very small,
specified truncation is done on the Fourier series ofx0ðtÞ as mentioned in Section 2.3. The time series of the
truncated Fourier series with M term harmonics is denoted as x(t). All quantities in [G] are calculated based on
x(t). Eq. (7) can be viewed in an alternate form in the frequency domain. For this, obtain the Fourier series of
all the columns of [G]. For columns associated with nonlinear terms, carry out an N point FFT of the time
series and obtain the Fourier coefficients. Moreover, f(t) is already known in the Fourier form. Thus, the
Fourier form of an equation where f(t) ¼ F0+Fcos(Ot) can be written as

a10 a20 � � � anp0

a11 a21 � � � anp1

b11 b21 � � � bnp1

..

. ..
. ..

. ..
.

a1Mx
a2Mx

� � � anpMx

b1Mx
b2Mx

� � � bnpMx

2
66666666664

3
77777777775

r1

r2

..

.

rnp

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

F0

F

0

..

.

0

0

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
, (A.1)

where Mx ¼ (N/2�1). Note that Mx4M due to the presence of nonlinear terms. For the columns
corresponding to linear terms, the terms from M+1 to Mx is kept equal to zero. The parameters can be
determined using a pseudo-inversion. It can be shown numerically that the result of identification is same in
the two cases provided energy equivalence is satisfied. From Parseval’s theorem [13], we have

R1
�1
jxðtÞj2 dt ¼

1
2p

R1
�1
jX ðoÞj2 do; where X(o) is the Fourier transform of x(t).

The Parseval’s equality for a real Fourier series takes the form

1

T

Z T

0

jx0ðtÞj2 dt ¼ a2
0 þ

1

2

X1
j¼1

ða2
j þ b2

j Þ.

For a truncated Fourier series with M harmonics, the above equality has the form

1

T

Z T

0

jxðtÞj2 dt ¼ a2
0 þ

1

2

XM
j¼1

ða2
j þ b2

j Þ, (A.2)

where xðtÞ ¼ a0 þ
PM

j¼1ðaj cos jOtþ bj sin jOtÞ. It follows that for preserving energy equivalence in the time
domain and the frequency domain, Eq. (A.1) has to be modified asffiffiffi

2
p

a10

ffiffiffi
2
p

a20 . . .
ffiffiffi
2
p

anp0

a11 a21 . . . anp1

b11 b21 . . . bnp1

..
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. ..
.

..

. ..
. ..

. ..
.

a1Mx
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. . . bnpMx
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>>>>>>>>>>>>>:
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. (A.3)
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Eq. (A.3) can be written as

½Ḡ�frg ¼ ff̄ g, (A.4)

where the jth column of ½Ḡ� is constituted from an ordered set of Fourier series coefficients obtained from the
jth column of [G], and is given by

ḠðjÞ ¼
ffiffiffi
2
p

aj0 aj1 bj1 . . . ajMx
bjMx

h iT
.

Eq. (A.4) represents the balance of harmonics. The parameters are obtained as

frgi ¼ ½Ḡ�
þff̄ g. (A.5)

Thus, Eq. (A.3) is to be used instead of Eq. (A.1) in an identification process using HBM.

Theorem. The identification results are equal for the time-domain formulation and the frequency-domain

formulation if the energy equivalence is satisfied.i.e. If frg1 ¼ ½G�
þff g and frg2 ¼ ½Ḡ�

þff̄ g then frg1 ¼ frg2.

Proof. The proof is a direct consequence of Plancherel’s theorem which states that the inner product of two
signals x1(t) and x2(t) in time domain is equal to the inner product of their expansion coefficients a and b with
respect to an orthonormal basis {e}:

If x1ðtÞ ¼
XMx

i¼1

aiei; x2ðtÞ ¼
XMx

i¼1

biei then x1;x2h i ¼ a; b̄
� �

. (A.6)

Adapting this theorem to the real Fourier series and using the present notations, we have

x1ðtÞ ¼ a10 þ
XMx

j¼1

ða1j cos jOtþ b1j sin jOtÞ; x2ðtÞ ¼ a20 þ
XMx

j¼1

ða2j cos jOtþ b2j sin jOtÞ. (A.7)

Using orthogonality relations in the trigonometric series, it can be shown that for a period T,Z
T

x1ðtÞx2ðtÞdt ¼ Tða10a20 þ
1

2

XMx

j¼1

ða1ja2j þ b1jb2jÞÞ. (A.8)

The discrete time version of the above equation is

XN

j¼1

x1½j�x2½j� ¼
N

2

ffiffiffi
2
p

a10 a11 b11 . . . a1Mx
b1Mx

h i ffiffiffi
2
p

a20 a21 b21 . . . a2Mx
b2Mx

h iT
. (A.9)

We have, Dij ¼
PN

k¼1GikGkj and it follows that

D̄ij ¼
X2Mx

k¼0

ḠikḠkj ¼ 2ai0a0j þ
XMx

k¼1

ðaikakj þ bikbkjÞ. (A.10)

Dij ¼
N

2
D̄ij and ½D� ¼

N

2
½D̄�. (A.11)

Similarly, using the notations fhg ¼ ½G�Tff g and fh̄g ¼ ½Ḡ�Tff̄ g; we get fhg ¼ N
2
fh̄g.

Thus, frg1 ¼ ½D�
�1fhg ¼ 2

N
½D̄��1 N

2
fh̄g ¼ ½D̄��1fh̄g ¼ frg2: Hence the proof. &

Thus, it follows that a minimization of the mean square error in time/frequency domain will lead to the
minimization of error in the frequency/time domain. A numerical illustration of the theorem is given below.
Consider a system with polynomial type nonlinearity given by the equation

m €xþ c _xþ k1xþ k2x2 þ k3x3 ¼ F 0 þ F cos Ot. (A.12)

The system and the excitation parameters are given in the first row of Table A1. The identified parameters
are identical in both the time-domain method as well as the frequency-domain method for any tolerance
used in the truncation of Fourier series. The parametric error and the condition number are listed in the table.
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Table A1

Comparison of time-domain and frequency-domain methods

System parameters: m ¼ 1, c ¼ 0.03, [k] ¼ [1,0.1,0.2]

Excitation parameters: F0 ¼ 0.02, F ¼ 0.5, Z ¼ 0.2

e Time-domain method Frequency-domain method

Ep lc Ep lc

10�2 0.40 12.23 0.40 12.23

10�4 0.13 12.29 0.13 12.29

10�6 0.0057 10.99 0.0057 10.99
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The first row in Eq. (A.3) is to weighted with 1=
ffiffiffi
2
p

to get the first row of Eq. (A.1) and hence the two
identification results (using Eqs. (A.1) and (A.3)) would be different if nonzero mean value is present in the
solution. A mean offset in displacement can occur in nonlinear systems subjected to harmonic inputs.

A.1. Identification using HBM

The difference between HBM and FSIM is summarized in Fig. 1. HBM is a frequency-domain method in
which higher-order harmonics are not considered in the final solution. It is seen that the removal of higher
order harmonics of negligible values in Eq. (A.3) improves the identification results in comparison to the case
where all terms are retained. However, this has to be done carefully as the removal of any row with a nonzero
entry may lead to large errors, since the entire set of equations are to be satisfied simultaneously. In FSIM,
these considerations are not required.

Appendix B. Error correlation studies in identification

B.1. Parametric error

In the parametric identification of systems, the aim is to obtain the actual values of the system parameters in
the system model. An error in the parametric identification can be defined based on the true values of the
parameters and the corresponding identified values. Let {ro} be the set of original parameter values and let the
identified parameter set be {ri} and the number of parameters be np. A normalized parametric error can be
obtained for each parameter as pj ¼ ðriðjÞ � roðjÞÞ=roðjÞ. The parametric error in the identification can be
defined as

Ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pT

j pj=np

q
. (B.1)

Thus, Ep is a measure of the error in parametric identification. A correct identification scheme should yield a
value of Ep close to zero. Though Eq. (B.1) is a simple way of defining the error, it cannot be estimated in an
experiment as this is defined in terms of actual system parameters, which are unknown. If the identification is
carried out using the simulated data as done in the present study, the parameters of the original and the
identified system are available for error estimation and the above measure can be used to assess the correctness
of the identification scheme.

B.2. RMS error between the response signals of the original and the identified system

The rms value of a signal x(t) over a length of time T is Er ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

R T

t¼0½xðtÞ�
2 dt

q
. Let xo(t) be the original

signal. Using the identified parameter values, a response signal xi(t) can be generated by simulation. The
original and the identified signals may be taken either from the initial transient portion of the response or from
the steady-state response. For these two signals, xo(t) is taken as a reference signal and the rms error in xi(t) is
defined as in Eq. (12). In the identification context, response trajectory of the system xo(t) is available. System
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identification is carried out to get the parameters {ri}. Using this identified parameters, a response trajectory
xo(t) can be simulated for the same system model with identical input. Thus, Er gives a measure of the quality
of identification. This measure can be used for the experimental case also and is one of the most common
practices of estimating error in the identification.

B.3. RMS error for the applied force and the force induced by the identified parameters

Let f(t) be the system excitation. This force is balanced by the sum of various forces developed in the system.
For example, consider a Duffing oscillator given by the equation m €xþ c €xþ kxþ ax3 ¼ f ðtÞ. The system
identified values may be substituted in the above equation to obtain an induced force fi(t). Error estimated
using the identified parameters, eðtÞ ¼ f iðtÞ � f ðtÞand the total mean square error in force over a length of
time T is

Ef ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0

½eðtÞ�2 dt

s
. (B.2)
B.4. Illustration example

There are instances where the rms-based error norms can give wrong results. To illustrate this point the
identification of a harmonically forced Duffing oscillator is considered. Consider two tests with the specified
Table B1

Comparison of two excitations

Excitation: F cos(Ot), frequency ratio Z ¼ (O/on), excitation parameters: (F, Z)

System parameters m c K a EP Ep Er Ef

2 0.02 1 0.2

Ident. parm., test 1 1.9963 0.0200 0.9997 0.2002 0.5, 0.3 0.0008 0.0001 0.0000

Ident. parm., test 2 2.4790 0.0204 1.0427 0.0406 0.4, 0.3 0.2084 0.0005 0.0001
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-0.5
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0 20 40 60 80 100 120 140
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Fig. B1. Displacement response of a Duffing oscillator for two different inputs.
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harmonic excitations and the results given in Table B1. The errors in the identification Ep, Er and Ef for the
two tests are given in the table. The first test gives accurate result whereas the second has a result with about
20% parametric error. However, the rms errors (Er and Ef ) in both cases are extremely small. The time series
of the displacement for the original and the identified system are shown in Fig. B1. The applied force and the
corresponding induced force using the identified values are compared in Fig. B2. In both these figures these are
in close agreement. Thus, the low values of rms errors do not necessarily imply that the parametric error is
small. Note that the Ep is not available in a real identification and the interpretation based on Er and Ef may
lead to wrong results in this case. Hence, an identification scheme should be good enough to overcome such
misleading results.

B.5. Correlation between Ep, Er and Ef

In order to obtain a relationship between various errors a qualitative study was made. A Duffing oscillator
with chosen parameters was subjected to a set of harmonic excitations. In each case, the system was identified.
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Fig. B2. Excitation force of a Duffing oscillator for two different inputs.
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Fig. B3. Ep and Er are not correlated.
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Fig. B4. Ef and Er are correlated.
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The three errors Ep, Er and Ef were estimated. One thousand tests were conducted. The results for which
Epo0.01, are considered. Fig. B3 shows Ep vs. Er and there is apparently no visible correlation between the
two quantities. It is also clear that the minimum of the trajectory error will not yield a minimum of parametric
error. On the other hand, Fig. B4 shows Er vs. Ef , in which there is a conical structure close to the origin. Since
there is a definite relationship between x(t) and f(t) through the governing differential equation, there should
be a correlation between their respective errors.
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